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Abstract

This report presents the design, simulation, and fabrication of a microfluidic platform
optimized for neuromorphic computing applications using living neural networks. The
design features hexagonal wells (34.64 µm side length) connected by 20 µm channels in a
honeycomb pattern. Computational fluid dynamics analysis implemented a mesh
structure of 988, 203 cells and 3.8 million nodes, achieving high mesh quality metrics
(0.934 orthogonal quality, 0.008 skewness) with strong convergence. At flow rates of
0.1–1 µL/min, pressure analysis revealed drops from 850 Pa to 0 Pa (average) and
1.58 kPa peak pressures across the simulated segment. Extrapolated to the full
50, 000 µm device length, this indicates pressure differentials of 177 kPa (average) and
329 kPa (maximum). Photolithographic fabrication successfully produced the designed
patterns, though with some edge roughness and corner rounding at feature interfaces.
Future work will involve experimental flow characterization to validate computational
predictions and optimize device performance.

Introduction 1

The rapid growth in artificial intelligence computational demands has exposed 2

fundamental limitations in traditional computing technologies [1]. As Moore’s law 3

approaches its physical limits, computing systems face increasing energy efficiency 4

challenges [2], prompting companies to explore extreme solutions like nuclear-powered 5

data centers. Digital computing architectures struggle to match the remarkable energy 6

efficiency observed in biological neural networks, which achieve complex computations 7

through probablistic and memory efficient computation [3]. 8

Biological computing using living neuronal networks presents a promising alternative 9

to conventional computational approaches [4–7]. However, the success of such systems 10

critically depends on maintaining precise cellular environments. Critical parameters 11

include maintaining pH at 7.2-7.4 through continuous CO2 buffering, temperature 12

stability at 37± 0.5°C, and more importantly, regular media exchange every 48− 72 13

hours to replenish glucose nutrient media while removing metabolic waste products [7, 14

8]. Manual media exchange, typically performed every 1–3 days, causes erratic nutrient 15

fluctuations, toxic buildup, and exposure to suboptimal conditions during media 16

replenishment. Automated microfluidic systems address these issues by maintaining 17
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precise, continuous nutrient delivery and waste removal, minimizing cellular stress and 18

replicating physiological conditions more accurately [8]. 19

This undergraduate research project aims to simulate and develop a microfluidic 20

platform optimized for future neuromorphic applications. The focus will be on 21

understanding computational fluid dynamics, lithography techniques, and designing a 22

microfluidic system to achieve precise flow control (0.1− 1 µL/min). 23

Although the integration of microelectrode arrays and neural cultures was not 24

researched here, this project design will account for future integration requirements 25

based on established parameters in the field and will serve as preparatory research for 26

future projects. 27

Methodology 28

Computational Fluid Dynamics 29

Finite element analysis was performed on a simulated single microfluidic channel. The 30

modular design allows single-channel flow analysis, saving computational resources and 31

enabling extrapolation to the full device. The geometry was created as a CAD mockup 32

in SolidWorks (Fig. 1). 33

Figure 1. SolidWorks Channel Design. A: Sketch relations used to define the
microfluidic channel dimensions. B: 3D representation of the single channel geometry
with 0.2424mm height.

The completed geometry was imported into ANSYS Fluent (Fig. 2), where input 34

and output faces were defined (highlighted in blue and green, respectively). Symmetry 35

walls were defined on the left and right sides of the channel (highlighted in red). 36

The complete mesh structure (Fig. 3) was configured using double precision settings, 37

with local sizing added specifically at the inlet and outlet faces to enhance precision 38

(Fig. 4). These boundary regions were configured with a growth rate of 1.2 and a target 39

mesh size of 0.25 µm. Surface mesh generation parameters were set with a minimum 40

size of 0.2368038 µm and a maximum size of 1 µm. The geometry consisted solely of 41

fluid regions with no void spaces, and fluid boundary types were set to wall conditions 42

by default with no-slip conditions applied. Boundary conditions specified velocity inlet 43

for the inlet face (0.0002 m/s, 0.0005 m/s, and 0.001 m/s) and pressure outlet for the 44

outlet face. The two lateral channel walls were designated as symmetry boundaries to 45

simulate the behavior of multiple parallel channels, with the entire region labeled as a 46

fluid domain. Temperature effects were not considered in the simulation, with water 47

modeled using its standard properties at room temperature. 48

A single boundary layer was implemented with default settings, comprising 6 layers, 49

a transition ratio of 0.272, and a growth rate of 1.2 across all fluid regions and zones. 50

Individual cell quality can be observed in the critical regions (Fig. 5), where the solver 51

utilized polyhedral mesh elements with a growth rate of 1.2 and maximum cell length of 52

December 19, 2024 2/10



Figure 2. ANSYS Fluent Geometry Import. Imported channel geometry showing
boundary condition definitions of the channel walls and inlet faces for fluid simulation.

Figure 3. Complete Mesh Overview. Full mesh visualization of overall mesh
quality across the channel geometry.

Figure 4. Detailed Mesh Views. A: Detailed view of mesh refinement at inlet
region. B: Front view displaying mesh transition.

0.8 µm. Only laminar flow was modeled. The simulation used aluminum as the solid 53

material and water as the fluid medium designated throughout the entire domain. The 54

simulation was executed for 1000 iterations using the SIMPLEC solution scheme. 55

Fabrication 56

The microfluidic channel design was first designed in SolidWorks to establish the 57

dimensions relationships of the device (Fig.1). This CAD design was then translated 58

into a mask layout using LayoutEditor software. The final mask design consists of an 59
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Figure 5. Individual Cell Visualization. A: Close-up view of polyhedral mesh
elements near inlet region. B: Detailed visualization of individual cell quality in critical
flow areas.

array of regular hexagonal wells with side lengths of 34.64 µm arranged in a honeycomb 60

pattern (Fig.6). Microfluidic channels connecting each well were designed with widths of 61

20 µm. The complete layout was exported in GDSII format for direct-write lithography. 62

Figure 6. Photolithography Mask Layout. Final mask design showing the
hexagonal well array pattern created in Layout Editor.

The microfluidic device was fabricated using standard photolithography techniques. 63

A silicon wafer was cleaned with acetone, isopropyl alcohol, and deionized water before 64

spin-coating with SU-8 1818 photoresist. The photoresist was spin-coated and 65

soft-baked to remove excess solvent. The substrate was then exposed to UV light 66

through direct-write lithography to define the microfluidic channel patterns. After 67

exposure, a post-exposure bake, photoresist development, and a hard bake step was done 68

to strengthen the patterned features. Final steps involved plasma ashing and a wet strip 69

resist process to ensure cleaner feature definition. Finally, the device was sealed using a 70

wafer bonding process to create the enclosed microfluidic channels, resulting in the final 71

functional device. A detailed step-by-step fabrication process flow is shown in Fig. 7. 72

To measure the performance of the fabricated microfluidic device, a testing protocol 73

was designed. The proposed protocol would connect the device’s inlet and outlet ports 74

to a pressure-driven flow system using UV-curable adhesive to create sealed connections, 75

as shown in Fig. 8. The testing protocol will be done at specified flow rates ranging 76
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Figure 7. Microfluidic Device Fabrication Process Flow. Schematic illustration
of the complete fabrication process to create the enclosed microfluidic device.

from 0.1− 1 µL/min. Pressure measurements would be recorded at both inlet and 77

outlet ports to calculate the pressure drop across the device. 78

Figure 8. Microfluidic Device Testing Setup. The microfluidic device with two
connecting ports for flow testing.

Results 79

Mesh Quality and Convergence Analysis 80

The final mesh optimization achieved 988,203 cells with over 3.8 million interior nodes, 81

approaching the 1,000,000 computational limitations for ANSYS Student Edition while 82

maintaining sufficient resolution for accurate flow field calculation. Mesh quality 83

metrics confirmed the simulation reliability with an average orthogonal quality of 0.934 84
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(minimum 0.317), average skewness of 0.008 (maximum 0.257), and maximum aspect 85

ratio of 25.48. Residual convergence thresholds of 1× 10−3 for continuity and 1× 10−5
86

for velocity components were achieved. 87

The static pressure profile reveals two distinct pressure drop characteristics across 88

the simulated channel segment. The average pressure decreases from approximately 89

850 Pa to 0 Pa, while maximum pressures peak at 1.58 kPa before dropping to 0 Pa at 90

the outlet. At flow rates of 0.1–1 µL/min, pressure analysis revealed drops from 850 Pa 91

to 0 Pa (average) and 1.58 kPa peak pressures across the simulated segment. 92

Extrapolated to the full 50, 000 µm device length, this indicates pressure differentials of 93

177 kPa (average) and 329 kPa (maximum). Photolithographic fabrication successfully 94

produced the designed patterns, though with some edge roughness and corner rounding 95

at feature interfaces. Future work will involve experimental flow characterization to 96

validate computational predictions and optimize device performance. 97

The pressure drop across the full device length was extrapolated through an 98

assumed linear relationship under the Hagen-Poiseuille equation: 99

∆Ptotal = ∆Punit ×
Ltotal

Lunit

(1)

where ∆Punit is the pressure drop across one unit, Lunit is the unit length, and 100

Ltotal is the total device length. 101

For the average pressure drop: 102

∆Ptotal = 850 Pa×
50, 000 µm

240 µm
= 177, 083 Pa ≈ 177 kPa (2)

For the maximum pressure drop: 103

∆Ptotal = 1, 580 Pa×
50, 000 µm

240 µm
= 329, 167 Pa ≈ 329 kPa (3)

Figure 9. Static Pressure Distribution. Static pressure profile showing both
average (850 Pa) and peak (1.58 kPa) pressure drops across the channel segment.

The static pressure distribution at the inlet face of the microfluidic channel reveals a 104

notable gradient, with an average pressure of 3.08× 102 Pa and localized peaks reaching 105

1.58× 103 Pa at the corners as shown in Fig. 10. This pressure concentration at the 106

corners is characteristic of fluid flow and arises due to abrupt changes in flow direction 107

and velocity gradients. At the sharp corners, the fluid velocity decreases locally, leading 108
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to a corresponding rise in static pressure as described by Bernoulli’s principle. In 109

contrast, regions along the central inlet face experience more uniform flow, resulting in 110

lower average pressures. 111

Figure 10. Static Pressure Distribution at Inlet. Static pressure profile for the
inlet, with uniform pressure region and characteristic boundary gradients near the wall.

The static pressure distribution across the microfluidic channel exhibits a 112

characteristic gradient from inlet to outlet, as shown in Fig. 11 and detailed in Table 1. 113

The pressure measurements demonstrate a well-designed initial geometry that minimizes 114

pressure losses while maintaining stable flow conditions. 115

Figure 11. Static Pressure Distribution Across Channel. Static pressure profile
illustrating the pressure drop across the length of a single microfluidic channel. The
design’s symmetry shows uniform flow distribution, with minimal pressure variations.

The velocity profile was found to be higher near the inlet and outlet channels and 116

symmetry walls (4.16× 10−4 m/s) and lower in the main channel (4× 10−5 m/s), as 117

shown in Fig. 12. 118

All quantitative measurements and analysis of the pressure distribution, including 119

inlet and outlet pressures, pressure gradients, and velocity measurements, are 120

summarized in Table 1 below. Additional results from simulating inlet velocity at 121

0.0005 m/s and 0.001 m/s are also included in the table. 122
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Figure 12. Velocity Distribution Across Channel. Velocity profile showing fluid
flow pathlines (left) and top view (right) across the microfluidic channel. The pathlines
illustrate the flow direction and velocity magnitude, with higher velocities (red) in the
center and lower velocities (blue/green) near the walls.

The volumetric flow rate Q was calculated using the equation: 123

Q = A× V (4)

where A is the cross-sectional area of the inlet and V is the fluid velocity at the inlet. 124

The inlet has dimensions of 0.025 mm× 0.04 mm, giving a cross-sectional area: 125

A = 0.025 mm× 0.04 mm = 0.001 mm2 = 1× 10−9 m2 (5)

For each inlet velocity, the volumetric flow rate was calculated as follows: 126

For V = 0.0002 m/s: 127

Q = (1× 10−9 m2)(0.0002 m/s) = 2× 10−13 m3/s = 0.012 µL/min (6)

For V = 0.0005 m/s: 128

Q = (1× 10−9 m2)(0.0005 m/s) = 5× 10−13 m3/s = 0.03 µL/min (7)

For V = 0.001 m/s: 129

Q = (1× 10−9 m2)(0.001 m/s) = 1× 10−12 m3/s = 0.06 µL/min (8)

Table 1. Pressure Analysis of Microfluidic Units

Length Pin Pout ∆P ∆P/L Velocityin Flow Rate Q
(µm) (Pa) (Pa) (Pa) (Pa/µm) (m/s) (µL/min)
240 ≈ 850 0 850 3.54 0.0002 0.012
240 ≈ 675 0 675 2.81 0.0005 0.03
240 ≈ 1350 0 1350 5.63 0.001 0.06

Fabrication and Testing 130

The photolithographic fabrication process successfully produced the designed hexagonal 131

well patterns. Two distinct pattern types were achieved: smooth-walled hexagonal wells 132

and hexagons with gear-like teeth as shown in Fig. 13. 133

However, examination of the features under microscopy revealed deviations from the 134

intended dimensions. Edge roughness and corner rounding were observed, particularly at 135

the gear-tooth interfaces, possibly indicating that the fabrication resolution approached 136

the limits of our photolithography process. While these imperfections are unlikely to 137

impact the overall functionality of the device, they suggest that further optimization of 138

exposure parameters and development conditions could improve pattern resolution. 139
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Figure 13. Microscopy of Fabricated Pattern. Optical microscope image showing
the hexagonal-with-gear-teeth array pattern after fabrication.

While this testing setup was designed and the device was prepared for 140

characterization, experimental flow measurements were not completed in this study. 141

Future work will involve flow characterization and comparison with the computational 142

fluid dynamics predictions to validate device performance. 143

Conclusion 144

This work demonstrated both computational modeling and fabrication capabilities for a 145

future neuromorphic microfluidic platform. The computational fluid dynamics analysis 146

achieved reliable convergence and revealed pressure and velocity distributions suitable 147

for maintaining precise flow control. The fabrication process successfully produced 148

hexagonal well arrays with two distinct patterns though with some edge roughness at 149

feature boundaries, indicating areas for process optimization. 150

Future work would focus on: (1) experimental validation of computational 151

predictions through flow characterization, (2) optimization of fabrication parameters to 152

improve pattern fidelity at smaller scales, and (3) integration of the platform with 153

neural network components. These steps will enable the development of a fully 154

functional microfluidic system for future neuromorphic computing projects. 155
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